# A Developmental Programming Perspective on Health and Disease Risk

### Dr Deborah M Sloboda

Canada Research Chair Perinatal Programming

Biochemistry & Biomedical Sciences, Obstetrics & Gynecology Pediatrics



7th National Biennial Conference on Adolescents and Adults with Fetal Alcohol Spectrum Disorder (FASD) April 7 2016

# What determines our health & disease risk?





Worldwide availability and consumption of highly processed, energy dense, low nutritional value foods

#### Decreased energy expenditure and increased mechanization



# What determines our health potential?





# What determines our health & disease risk?

# Interactions between early life and postnatal environments



# Historical data



"How fast can you make me literate? — I want to rewrite history."







FIG 3.1-Mothers in Hitchin, Hertfordshire at the turn of the century.

## Hertfordshire, UK, early 1900s





# Ethel Margaret Burnside

- Chief health inspector and Lady Inspector of Midwives
- Records enabled tracing of 16000 men and women born in Hertfordshire between 1911-1930



# Information from one of Miss Burnside's birth and infant growth records, *c*1917

Weight Weight Condition, and I No. of Food. at Birth. 1st Year Visits. Health Vis 84 les 24 2 les B. 11 Falthy & well developed. Buckland Se les 184 llo B 12 h. moved to Bury Geen L. Jadham. Had measles pr 20 Bot. 11 Y. J. 8 B. aber in it neck opened. ant. fortanelle still per 2 3 yrs. aldomen 13.13.



# Early studies in early life origins of health and disease risk





**Prof David Barker** 

What is the relationship between chronic disease and birth weight?



# Birth weight is associated with chronic disease risk



## What did Dr Barker find?

relationship between
birth weight and type
2 diabetes in adult
men



Barker & Osmond The Lancet 1(8489): 1077 1986



# *"Developmental Programming"*

# The fetal and infant origins of adult disease

The womb may be more important than the home  $\frac{M}{2}$ 

BMJ VOLUME 301 17 NOVEMBER 1990





Birth weight is a "marker" of the prenatal environment

*Low birth weight* indicates some adversity (or insult) during the early life environment





Bloomfield et al. Arch Dis Child Fetal Neonatal Ed 91:F299 2006



# How is this happening?

# The fetal and infant origins of adult disease

The womb may be more important than the home  $\frac{M}{2}$ 

BMJ VOLUME 301 17 NOVEMBER 1990



# What about nutrition?

1944 - 1945



## Only 400 - 800 Calories a day



22,000 people affected by famine and cold.

# Among them were pregnant women

Maternal famine→ Children born to these mothers had as adults\*:

- Obesity
- Type 2 diabetes
- High blood pressure
- Heart disease



\*after controlling for lifestyle and behaviour

# Schizophrenia After Prenatal Exposure to the Dutch Hunger Winter of 1944-1945

Ezra S. Susser, MD, Dr PH; Shang P. Lin, PhD

[+] Author Affiliations

Arch Gen Psychiatry. 1992;49(12):983-988. doi:10.1001/archpsyc.1992.01820120071010

...not just "classic" chronic diseases...

#### **Brief Report**

#### Prenatal Exposure to Famine and Brain Morphology in Schizophrenia

Hilleke E. Hulshoff Pol, Ph.D.
Hans W. Hoek, M.D., Ph.D.
Ezra Susser, M.D., Dr.P.H.
Alan S. Brown, M.D.
Alexandra Dingemans, M.S.
Hugo G. Schnack, Ph.D.
Neeltje E.M. van Haren, M.S.
Lino Moreira Pereira Ramos, M.D.
Christine C. Gispen-de Wied, M.D., Ph.D.
René S. Kahn, M.D., Ph.D.

**Objective:** The authors assessed the effects of nutritional deficiency during the first trimester of pregnancy on brain morphology in patients with schizophrenia. **Method:** Nine schizophrenic patients and nine healthy comparison subjects exposed during the first trimester of gestation to the Dutch Hunger Winter were evaluated with magnetic resonance brain imaging, as were nine schizophrenic patients and nine healthy subjects who were not prenatally exposed to the famine.

**Results:** Prenatal famine exposure in patients with schizophrenia was associated with decreased intracranial volume. Prenatal Hunger Winter exposure alone was related to an increase in brain abnormalities, predominantly white matter hyperintensities.

**Conclusions:** Nutritional deficiency during the first trimester of gestation resulted in an increase in clinical brain abnormalities and was associated with aberrant early brain development in patients with schizophrenia. Stunted brain development secondary to factors that affect brain growth during the first trimester of gestation may thus be a potential risk factor for developing schizophrenia.

(Am J Psychiatry 2000; 157:1170-1172)

# What are the causes?







# Early life adversity





Changes in health expectancy and biological function



Relationships between the developmental and postnatal environment impact on health and disease risk





# Developmental Programming:



# "Fetal Fortune Telling"

The developing organism uses information (from the mother) to predict its future environment so that it can adapt its development and better its chances of survival.



# TWE CRITONE DATE OF THE RECEIPTION OF THE RECEIP

# Predictive Adaptive Responses

## The Prediction:

The developing fetus receives information from the mother in the form of hormones, nutrients or oxygen and uses these to predict the environment

## The Adaptation:

The developing fetus will then use this information to adapt it's development to better it's chances of survival after birth

These predictions may not be accurate & adaptations not necessary and thus may result in disease



# Can the fetus be "misinformed"?

#### **Maternal disease**

- Inflammatory diseases
  - Asthma
  - Periodontal disease

## Pharmaceutical exposures

- Antidepressants
  - SSRIs

#### Drugs

- Smoking
  - Nicotine
  - THC
- Alcohol intake

# Fetal development

# The Developmental Origins of Health and Disease

Developmental Environment Postnatal Environment



**Risk of disease** 

- diabetes
- heart disease
- obesity
- •stress/anxiety





# sloboda laboratory

#### DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE AT MCMASTER UNIVERSITY



# Understanding the mechanisms: animal models



# Balanced Diet (Control)

Mothers' Diet during pregnancy



# Undernourished

High Fat



# Maternal Undernutrition





- Pregnant rats fed 30-50 % of control diet
  - decreases birth weight
  - followed by accelerated postnatal growth



Vickers et al, 2000, Am J Physiol Endo Metab

# **Maternal Undernutrition:**

• Offspring are obese despite eating control diet!





# How is this happening? The "Couch Potato" Syndrome



Vickers et al, Am J Physiol, 2003

# Accelerated Aging?





#### Pre- and Postnatal Nutritional Histories Influence Reproductive Maturation and Ovarian Function in the Rat

Deborah M. Sloboda<sup>1</sup>\*, Graham J. Howie<sup>1</sup>, Anthony Pleasants<sup>2</sup>, Peter D. Gluckman<sup>1</sup>, Mark H. Vickers<sup>1</sup>

1 The Liggins Institute and the National Research Centre for Growth and Development, The University of Auckland, Auckland, New Zealand, 2 AgResearch, Hamilton, New Zealand

## EARLY PUBERTY!







#### Pre- and Postnatal Nutritional Histories Influence Reproductive Maturation and Ovarian Function in the Rat

Deborah M. Sloboda<sup>1</sup>\*, Graham J. Howie<sup>1</sup>, Anthony Pleasants<sup>2</sup>, Peter D. Gluckman<sup>1</sup>, Mark H. Vickers<sup>1</sup>

1 The Liggins Institute and the National Research Centre for Growth and Development, The University of Auckland, Auckland, New Zealand, 2 AgResearch, Hamilton, New Zealand



Maternal undernutrition decreased follicle (egg) #'s in offspring ovaries

Primordial follicles decreased

Antral follicles decreased











Bernal et al. PLoS ONE 2010

#### Maternal undernutrition decreased blood vessel density in offspring ovaries







# Maternal undernutrition increases oxidative stress levels in offspring ovaries



Andy Oxidant meets Free Radical.

# ↑ ovarian oxidative stress





## The impacts of prenatal undernutrition

- Fetal Growth Restriction
- Early puberty
- Obesity
- Sarcopenia
- Fatty liver
- Hypertension
- Endothelial dysfunction
- Insulin resistance
- Leptin resistance
- Increased anxiety
- Altered appetite
- Hyperphagia
- Fat preference in diet
- Altered stress hormones
- Increased oxidative stress



Vickers, et al. 2001, 2002, 2003, 2007, Sloboda et al. 2009, Howie et al. 2011, Bernal et al. 2010



# Maternal nutrient excess and Maternal obesity



# Percent of people that are classified as overweight and obese in Canada in 2009-10



## Maternal obesity and pregnancy....

- Overweight (BMI 25.0–29.9) and obese women (BMI >30) had significantly increased risk for:
  - gestational diabetes
  - preeclampsia
  - cesarean delivery
  - large-for gestational-age infants

#### Maternal obesity vs excessive pregnancy weight gain



#### Excessive pregnancy weight gain & maternal high fat diet





Connor et al. 2012; J Physiol, Tsoulis et al. 2016, Biology of Reproduction

#### Excessive pregnancy weight gain & maternal high fat diet





Connor et al. 2012; J Physiol

#### **Excessive pregnancy weight gain & high fat diet**

- offspring of mothers fed a HF diet are born small and end up obese and insulin resistant
  - **DESPITE** eating a control diet





Howie et al, J Physiol, 2009

#### Maternal HF diet accelerates pubertal onset, disrupts reproductive cycles in offspring



Sloboda et al. 2009 PLoS ONE

#### Maternal high fat diet results in fetal oocyte loss







Tsoulis et al. 2016, Biology of Reproduction



#### Disparate nutritional diets = similar offspring outcomes



### Balanced Diet (Control)

Undernourished



## High Fat

**Offspring have:** 

 ✓ Obesity
 ✓ Diabetes
 ✓ Fatty liver
 ✓ Early puberty
 ✓ Early reprod aging



#### Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life

#### RC Painter,<sup>a</sup> C Osmond,<sup>b</sup> P Gluckman,<sup>c</sup> M Hanson,<sup>d</sup> DIW Phillips,<sup>b</sup> TJ Roseboom<sup>a</sup>

<sup>a</sup> Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands <sup>b</sup> MRC Epidemiology Resource Centre, University of Southampton, Southampton, UK <sup>c</sup> Liggins Institute, University of Auckland, Auckland, New Zealand <sup>d</sup> Developmental Origins of Adult Disease Centre, University of Southampton, Southampton, UK *Correspondence:* Dr TJ Roseboom, Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, PO Box 22660, 1100 DD Amsterdam, the Netherlands. Email t.j.roseboom@amc.uva.nl

# Transgenerational transmittance of disease risk



# ve start? Where do

#### REVIEW

#### **Parenting from before conception**

Michelle Lane, Rebecca L. Robker, Sarah A. Robertson\*



Science 2014 (345) 6198 p756

#### Germ cells determine the next generation



Early life impacts on reproductive development= Transgenerational impacts?



#### **EPIGENETICS**







- epigenetics = "on top of" genetics
- genes are turned on and off because of environmental induced changes that occur "on top of" the DNA sequence
  - But NOT in the DNA sequence itself





#### Epigenetics during development: a window of vulnerability?



- Epigenetic modifications regulate cell destiny
- Important in primordial germ cells (sperm and oocyte)

#### This gene regulates growth

IGF2 DMR methylation company individuals periconceptionally exposed to famine and their unexposed,

same-sex siblings

Table

| IGF2 DMR<br>methylation<br>Average | Mean methylation fraction (SD) |         |                     |         | Relative change | Difference |                        |
|------------------------------------|--------------------------------|---------|---------------------|---------|-----------------|------------|------------------------|
|                                    | Exposed $(n = 60)$             |         | Controls $(n = 60)$ |         | exposed         | in SDs     | Р                      |
|                                    | 0.488                          | (0.047) | 0.515               | (0.055) | -5.2%           | -0.48      | 5.9 × 10 <sup>-5</sup> |
| CpG 1                              | 0.436                          | (0.037) | 0.470               | (0.041) | -6.9%           | -0.78      | 1.5 × 10 <sup>-4</sup> |
| CpG 2 and 3                        | 0.451                          | (0.033) | 0.473               | (0.055) | -4.7%           | -0.41      | 8.1 × 10 <sup>-3</sup> |
| CpG 4                              | 0.577                          | (0.114) | 0.591               | (0.112) | -2.3%           | -0.12      | .41                    |
| CpG 5                              | 0.491                          | (0.061) | 0.529               | (0.068) | -7.2%           | -0.56      | 1.4 × 10 <sup>-3</sup> |

P values were obtained using a linear mixed model and adjusted for age.

# Persistent epigenetic differences associated with prenatal exposure to famine in humans

Bastiaan T. Heijmans<sup>a,1,2</sup>, Elmar W. Tobi<sup>a,2</sup>, Aryeh D. Stein<sup>b</sup>, Hein Putter<sup>c</sup>, Gerard J. Blauw<sup>d</sup>, Ezra S. Susser<sup>e,f</sup>, P. Eline Slagboom<sup>a</sup>, and L. H. Lumey<sup>e,1</sup>



Are these changes to developmental pathways permanent?



#### Nutritional Interventions: can we rescue this?

DHA methylatio

#### **Methyl Donors**

- Choline
- Folate

(your mom told you to eat spinach right?)

#### **Essential Amino Acids**

Taurine



() RNA-base

mechae



#### Antioxidants

- Vitamin C
- Melatonin



Andy Oxidant meets Free Radical.

#### ARTICLE

Received 27 Nov 2013 | Accepted 26 Mar 2014 | Published 29 Apr 2014

DOI: 10.1038/ncomms4746

OPEN

#### Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

Paula Dominguez-Salas<sup>1</sup>, Sophie E. Moore<sup>1</sup>, Maria S. Baker<sup>2</sup>, Andrew W. Bergen<sup>3</sup>, Sharon E. Cox<sup>1</sup>, Roger A. Dyer<sup>4</sup>, Anthony J. Fulford<sup>1</sup>, Yongtao Guan<sup>2,5</sup>, Eleonora Laritsky<sup>2</sup>, Matt J. Silver<sup>1</sup>, Gary E. Swan<sup>6</sup>, Steven H. Zeisel<sup>7</sup>, Sheila M. Innis<sup>4</sup>, Robert A. Waterland<sup>2,5</sup>, Andrew M. Prentice<sup>1</sup> & Branwen J. Hennig<sup>1</sup>

# Don't blame the mothers

14 AUGUST 2014 | VOL 512 | NATURE | 131





# **Paternal Lineage**

Stuppia et al. Clinical Epigenetics (2015) 7:120 DOI 10.1186/s13148-015-0155-4



**Open Access** 

( CrossMark

Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

Liborio Stuppia<sup>1,3\*</sup>, Marica Franzago<sup>1</sup>, Patrizia Ballerini<sup>2</sup>, Valentina Gatta<sup>1,3</sup> and Ivana Antonucci<sup>1,3</sup>



## Looking ahead ...

# ....Unravelling mechanisms

Long term approach to the early life origins of health and disease risk



Integrated, Capacity-building approach

#### **AKNOWLEDGEMENTS**

## McMaster University





#### www.slobodalab.com @Sloboda\_Lab



Canada Foundation or Innovation ondation canadienne

oour l'innovation







