Constitutional Delay of Growth and Puberty and Isolated Hypogonadotropic Hypogonadism: Two Sides of the Same Coin? Can We tell Heads from Tails?

Mark R. Palmert, M.D., Ph.D

The Hospital for Sick Children

The University of Toronto

Conflicts of Interest

None to declare

Objectives

- Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap
- 2. Recognize clinical features that may allow for discrimination of one condition from the other
- 3. Discuss utility of diagnostic laboratory tests

A 14 yr old young man with no significant past medical history presents to your clinic due to lack of pubertal development

A 14 yr old young man with no significant past medical history presents to your clinic due to lack of pubertal development

Which does he have: CDGP/SLDP or IHH/CHH?

OK. Here's another case:

A 14 yr old young man with no significant past medical history presents to your clinic due to lack of pubertal development

OK. Here's another case:

A 14 yr old young man with no significant past medical history presents to your clinic due to lack of pubertal development.

Which does he have: CDGP/SLDP or IHH/CHH?

OK. Here's another case:

A 14 yr old young man with no significant past medical history presents to your clinic due to lack of pubertal development.

Which does he have: CDGP/SLDP or IHH/CHH?

Statistics makes it most likely that both have CDGP/SLDP. But, is it possible to distinguish reliably these two conditions otherwise? Especially in absence of "classic" clinical features?

OK. Here's another case:

A 14 yr old young man with no significant past medical history presents to your clinic due to lack of pubertal development.

Which does he have: CDGP or IHH?

Statistics makes it most likely that both have CDGP. But, is it possible to distinguish reliably these two conditions otherwise? Especially in absence of "classic" clinical features?

Often not!

But Distinguishing (when possible) is important

Allows for appropriate counselling of youth and family

Alleviates distress--lack of diagnosis generates anxiety and worry about a potential lifelong condition with attendant fertility implications

Avoids unnecessary testing, such as MRIs, that may be done

Simplifies treatment decisions as regimens for CDGP/SLDP are complicated by need to interrupt therapy and reassess for endogenous puberty

Objectives

- Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap.
- 2. Recognize clinical features that may allow for discrimination of one condition from the other.
- 3. Discuss utility of diagnostic laboratory tests.

CDGP & IHH: On a Spectrum but also Distinct

More and more genes are being identified as causes of IHH/CHH

Molecular and Cellular Endocrinology Volumes 254–255, 25 July 2006, Pages 60-69

Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes

Nelly Pitteloud ^a \land ^{III}, Astrid Meysing ^a, Richard Quinton ^b, James S. Acierno Jr. ^a, Andrew A. Dwyer ^a, Lacey Plummer ^a, Eric Fliers ^c, Paul Boepple ^a, Frances Hayes ^a, Stephanie Seminara ^a, Viriginia A. Hughes ^a, Jinghong Ma ^d, Pierre Bouloux ^b, Moosa Mohammadi ^d, William F. Crowley Jr. ^a

More and more genes are being identified as causes of IHH/CHH

NA.

Molecular and Cellular Endocrinology Volumes 254–255, 25 July 2006, Pages 60-69

Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism

Janne Tornberg^a, Gerasimos P. Sykiotis^b, Kimberly Keefe^b, Lacey Plummer^b, Xuan Hoang^b, Janet E. Hall^b, Richard Quinton^c, Stephanie B. Seminara^b, Virginia Hughes^b, Guy Van Vliet^d, Stan Van Uum^e, William F. Crowley^b, Hiroko Habuchi^f, Koji Kimata^f, Nelly Pitteloud^{b,1,2,3}, and Hannes E. Bülow^{a,g,2,3}

11524–11529 PNAS July 12, 2011 vol. 108 no. 28	
--	--

More and more genes are being identified as causes of IHH/CHH

Molecular and Cellular Endocrinology Volumes 254–255, 25 July 2006, Pages 60-69

Heparan sulfate 2017 in extracellular s Research Article with idiopathic

Janne Tornberg^a, Gerasimos P. Sy Richard Quinton^c, Stephanie B. Se Hiroko Habuchi^f, Koji Kimata^f, Ne 11524–11529 | PNAS | July KLB, encoding β -Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism

EMBO

Molecular Medicine

ΠŤ

OPEN

Cheng Xu¹, Andrea Messina¹, Emmanuel Somm¹, Hichem Miraoui^{1,†}, Tarja Kinnunen², James Acierno Jr¹, Nicolas J Niederländer¹, Justine Bouilly¹, Andrew A Dwyer^{1,3}, Yisrael Sidis¹, Daniele Cassatella¹, Gerasimos P Sykiotis¹, Richard Quinton⁴, Christian De Geyter⁵, Mirjam Dirlewanger⁶, Valérie Schwitzgebel⁶, Trevor R Cole⁷, Andrew A Toogood⁸, Jeremy MW Kirk⁹, Lacey Plummer¹⁰, Urs Albrecht¹¹, William F Crowley Jr¹⁰, Moosa Mohammadi¹², Manuel Tena-Sempere^{13,14,15}, Vincent Prevot^{16,17} & Nelly Pitteloud^{1,*}

40 genes have been identified to cause IHH/CHH

Over 50% of cases genetic cause is unknown

Benetics Elks et al. Nature Genetics, 2010

Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

Shared genetic aetiology of puberty timing between sexes and with health-related outcomes

Felix R. Day¹, Brendan Bulik-Sullivan^{2,3,4}, David A. Hinds⁵, Hilary K. Finucane^{6,7}, Joanne M. Murabito^{8,9}, Joyce Y. Tung⁵, Ken K. Ong^{1,10,*} & John R.B. Perry^{1,*}

LETTER Perry et al. Nature, 2014

doi:10.1038/nature13545

Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche

Article | Published: 24 April 2017

Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

Felix R Day, Deborah J Thompson [...] John R B Perry 🖾

Nature Genetics 49, 834–841 (2017) | Download Citation 🛓

ARTICLE

Received 22 Jun 2015 | Accepted 7 Oct 2015 | Published 9 Nov 2015

DOI: 10.1038/ncomms9842 OPEN

Shared genetic aetiology of puberty timing between sexes and with health-related outcomes

Felix R. Day¹, Brendan Bulik-Sullivan^{2,3,4}, David A. Hinds⁵, Hilary K. Finucane^{6,7}, Joanne M. Murabito^{8,9}, Joyce Y. Tung⁵, Ken K. Ong^{1,10,*} & John R.B. Perry^{1,*}

JCEM: 2020

CLINICAL RESEARCH ARTICLE

A Polygenic Risk Score Suggests Shared Genetic Architecture of Voice Break With Early Markers of Pubertal Onset in Boys

María C. Lardone,¹ Alexander S. Busch,² José L. Santos,³ Patricio Miranda,³ Susana Eyheramendy,⁴ Ana Pereira,⁵ Anders Juul,² Kristian Almstrup,² and Verónica Mericq¹

ARTICLE

Received 22 Jun 2015 | Accepted 7 Oct 2015 | Published 9 Nov 2015

DOI: 10.1038/ncomms 9842

Shared genetic aetiology c sexes and with health-rela

Felix R. Day¹, Brendan Bulik-Sullivan^{2,3,4}, David A. Hinds Joyce Y. Tung⁵, Ken K. Ong^{1,10,*} & John R.B. Perry^{1,*}

HHS Public Access

Author manuscript

OPEN

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:

Curr Opin Endocrinol Diabetes Obes. 2016 February ; 23(1): 57–65. doi:10.1097/MED. 00000000000213.

The genetics of pubertal timing in the general population: recent advances and evidence for sex-specificity

Diana L. Cousminer¹, Elisabeth Widén², and Mark R. Palmert^{3,4}

ARTICLE Received 22 Jun 2015 | Accepted 7 Oct 2015 | Published 9 Nov 2015 DOI: 10.1038/receives/1942 OPEN

Shared genetic aetiology of puberty timing between sexes and with health-related outcomes

Felix R. Day¹, Brendan Bulik-Sullivan^{23,4}, David A. Hinds⁵, Hilary K. Finucane^{6,7}, Joanne M. Murabito^{8,9}, Joyce Y. Tung⁵, Ken K. Ong^{1,10,*} & John R.B. Perry^{1,*}

Human Molecular Genetics, 2017, Vol. 26, No. 18 3585–3599

OXFORD

doi: 10.1093/hmg/ddx246 Advance Access Publication Date: 27 June 2017 Original Article

ORIGINAL ARTICLE

Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development

Huayun Hou^{1,2,†}, Liis Uusküla-Reimand^{1,3,†}, Maisam Makarem¹, Christina Corre¹, Shems Saleh^{1,4}, Ariane Metcalf¹, Anna Goldenberg^{1,4,*,‡}, Mark R. Palmert^{1,5,6,*,‡} and Michael D. Wilson^{1,2,*,‡}

Human Molecular Genetics, 2017, Vol. 26, No. 18 3585–3599

doi: 10.1093/hmg/ddx246 Advance Access Publication Date: 27 June 2017 Original Article

ORIGINAL ARTICLE

Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development

Huayun Hou^{1,2,†}, Liis Uusküla-Reimand^{1,3,†}, Maisam Makarem¹, Christina Corre¹, Shems Saleh^{1,4}, Ariane Metcalf¹, Anna Goldenberg^{1,4,*,‡}, Mark R. Palmert^{1,5,6,*,‡} and Michael D. Wilson^{1,2,*,‡}

largely shared ♀♂

Mutations: IHH/CHH 40 Genes

Sequencing studies uncovering genes that cause CDGP/SLDP

2016

Research Article

EMBO Molecular Medicine

IGSF10 mutations dysregulate gonadotropinreleasing hormone neuronal migration resulting in delayed puberty

Sasha R Howard^{†,1}, Leonardo Guasti^{†,1}, Gerard Ruiz-Babot¹, Alessandra Mancini¹, Alessia David², Helen L Storr¹, Lousie A Metherell¹, Michael JE Sternberg², Claudia P Cabrera^{3,4}, Helen R Warren^{4,5}, Michael R Barnes^{3,4}, Richard Quinton⁶, Nicolas de Roux^{7,8,9}, Jacques Young^{10,11,12,13}, Anne Guiochon-Mantel^{10,11,12}, Karolina Wehkalampi¹⁴, Valentina André¹⁵, Yoav Gothilf¹⁶, Anna Cariboni^{15,17} & Leo Dunkel^{1,*}

Sequencing studies uncovering genes that cause CDGP/SLDP

2016

Research Article

SOURCE TRANSPARENT OPEN DATA PROCESS ACCESS EMBO Molecular Medicine

Leo Dunkel^{1,†,*}

IGSF10 mutations dysregulate gonadotropinreleasing hormone neuronal migration resulting in delayed puberty

Sasha R Howard^{†,1}, Leonardo Guasti^{†,1}, Gerard Ruiz-Babot¹, Alessandra Manci Helen L Stor¹, Lousie A Metherell¹, Michael JE Sternberg², Claudia P Cabrera³ Michael R Barnes^{3,4}, Richard Quinton⁶, Nicolas de Roux^{7,8,9}, Jacques Young^{10,1} Anne Guiochon-Mantel^{10,11,12}, Karoliina Wehkalampi¹⁴, Valentina André¹⁵, Yoa Anna Cariboni^{15,17} & Leo Dunkel^{1,*}

 Human Molecular Genetics, 2019, Vol. 28, No. 8
 1357-1368

 doi: 10.1093/hmg/ddy451

 Advance Access Publication Date: 4 January 2019

 General Article

Common/Rare Variants—few genes

Mutations: IHH/CHH 40 genes

Sequencing studies uncovering genes that cause CDGP/SLDP

2016

Research Article

SOURCE TRANSPARENT OPEN DATA PROCESS ACCESS EMBO Molecular Medicine

IGSF10 mutatior releasing hormo delayed puberty

Sasha R Howard^{†,1}, Leonardo G Helen L Storr¹, Lousie A Mether Michael R Barnes^{3,4}, Richard Qu Anne Guiochon-Mantel^{10,11,12}, K Anna Cariboni^{15,17} & Leo Dunke

HS6ST1 Insufficiency Causes Self-Limited Delayed Puberty in Contrast With Other GnRH Deficiency Genes (J Clin Endocrinol Metab 103: 3420–3429, 2018)

Sasha R. Howard,¹* Roberto Oleari,²* Ariel Poliandri,¹ Vasiliki Chantzara,³ Alessandro Fantin,³ Gerard Ruiz-Babot,¹ Louise A. Metherell,¹ Claudia P. Cabrera,^{4,5} Michael R. Barnes,^{4,5} Karoliina Wehkalampi,⁶ Leonardo Guasti,¹* Christiana Ruhrberg,³* Anna Cariboni,^{2,3}* and Leo Dunkel¹*

GENERAL ARTICLE

EAP1 regulation of GnRH promoter activity is

important for human pubertal timing

Alessandra Mancini¹, Sasha R. Howard¹, Claudia P. Cabrera², Michael R. Barnes², Alessia David³, Karoliina Wehkalampi⁴, Sabine Heger⁵, Alejandro Lomniczi⁶, Leonardo Guasti^{1,†}, Sergio R. Ojeda^{6,†} and Leo Dunkel^{1,†,*}

Sequencing studies uncovering genes that cause CDGP/SLDP

JCEM ONLINE

Advances in Genetics

A Shared Genetic Basis for Self-Limited Delayed Puberty and Idiopathic Hypogonadotropic Hypogonadism

Jia Zhu, Ruth E.-Y. Choa, Michael H. Guo, Lacey Plummer, Cassandra Buck, Mark R. Palmert, Joel N. Hirschhorn, Stephanie B. Seminara,* and Yee-Ming Chan*

With whole exome sequencing,

-- Demonstrated shared genetic basis of selflimited delayed puberty & IHH.

--IHH causing variants enriched in family members with DP compared with family members without DP (variants in *FGFR1, KAL1, TAC3*) (53% vs 12%)

Sequencing studies uncovering genes that cause CDGP/SLDP

JCEM ONLINE

Advances in Genetics

A Shared Genetic Basis for Self-Limited Delayed Puberty and Idiopathic Hypogonadotropic Hypogonadism

Jia Zhu, Ruth E.-Y. Choa, Michael H. Guo, Lacey Plummer, Cassandra Buck, Mark R. Palmert, Joel N. Hirschhorn, Stephanie B. Seminara,* and Yee-Ming Chan*

With whole exome sequencing,

-- Demonstrated shared genetic basis of selflimited delayed puberty & IHH.

--IHH causing variants enriched in family members with DP compared with family members without DP (variants in *FGFR1, KAL1, TAC3*) (53% vs 12%)

--Sequencing of 57 additional individuals with DP found enrichment for IHH variants in DP subjects compared to ethnicity matched controls (*IS17RD* and *TAC3*) (14% vs 5.6%)

The genetic architecture of CDGP/SLDP and IHH/CHH are largely distinct

Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures

Daniele Cassatella^{1,2,*}, Sasha R Howard^{3,*}, James S Acierno^{1,2,*}, Cheng Xu^{1,2}, Georgios E Papadakis¹, Federico A Santoni¹, Andrew A Dwyer^{1,2}, Sara Santini¹, Gerasimos P Sykiotis¹, Caroline Chambion¹, Jenny Meylan¹, Laura Marino¹, Lucie Favre¹, Jiankang Li⁴⁵, Xuanzhu Liu⁴, Jianguo Zhang^{4,5}, Pierre-Marc Bouloux⁶, Christian De Geyter⁷, Anne De Paepe⁸, Waljit S Dhillo⁹, Jean-Marc Ferrara¹⁰, Michael Hauschild¹, Mariarosaria Lang-Muritano¹¹, Johannes R Lemke¹², Christa Flück¹³, Attila Nemeth¹⁴, Franziska Phan-Hug¹, Duarte Pignatelli¹⁵, Vera Popovic¹⁶, Sandra Pekic^{16,17}, Richard Quinton¹⁸, Gabor Szinnai¹⁹, Dagmar l'Allemand²⁰, Daniel Konrad¹¹, Saba Sharif²¹, Özlem Turhan Iyidir²², Brian J Stevenson²³, Huanming Yang^{4,24}, Leo Dunkel^{3,*} and Nelly Pitteloud^{1,2,†}

The genetic architecture of CDGP/SLDP and IHH/CHH are largely distinct

Clinical Study D Cassatella and others Diverse genetic patterns in CHH 178.4 377-388 and CDGP

Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures

Daniele Cassatella^{1,2}, Sasha R Howard^{1,4}, James S Acierno^{1,2,4}, Cheng Xu^{1,2}, Georgios E Papadakis¹, Federico A Santoni¹, Andrew A Dwyer^{1,2}, Sara Santini¹, Gerasimos P Sykiolis¹, Caroline Chambion¹, Jenny Meylan¹, Laura Marino¹, Lucie Fave¹, Jiankang Li², Xuanzhu Liu⁴, Jianguo Zhang^{1,4}, Pierre-Marc Bouloux⁶, Christian De Geyter¹, Anne De Paepe⁴, Waljit S Dhillo¹, Jean-Marc Ferrara¹⁰, Michael Hauschild¹, Mariarosaria Lang-Muritano¹¹, Johamos R Lenke¹¹, Christa Flück¹¹, Attila Nemeth¹⁴, Franziska Phan-Hug¹, Duarte Pignatelli¹¹, Vera Popovic¹⁶, Sandra Pekic^{16,17}, Richard Quinton¹⁸, Gabor Szinnal¹⁹, Dagmar l'Allemand¹¹, Daniel Konrad¹¹, Saba Sharl¹², Özlem Turhan Iyidir²², Brian J Stevenson¹², Huanning Yang¹²², Leo Dunkel¹³⁻ and Nelly Pitteloud¹²⁻¹ EJE 2018

Both CDGP/SLDP and IHH/CHH are Genetic Conditions

Some genetic causes of disorders of puberty overlap; most don't

Howard S and Dunkel L 2019 Oct; 40(5): 1285–1317

CDGP & IHH: On a Spectrum but also Distinct

Greater Genetic Burden

Objectives

- Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap. Both disorders have strong genetic basis but causative genes are largely distinct
- 2. Recognize clinical features that may allow for discrimination of one condition from the other
- 3. Discuss utility of diagnostic laboratory tests

Objectives

- 1. Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap. Both disorders have strong genetic basis but causative genes are largely distinct
- 2. Recognize clinical features that may allow for discrimination of one condition from the other.
- 3. Discuss utility of diagnostic laboratory tests.

Differentiating CDGP/SLDP from IHH/CHH

Differentiating CDGP/SLDP from IHH/CHH

Differentiating CDGP/SLDP from IHH/CHH: History

Classic Features/Questions—IHH/CHH:

Abnormal sense of smell

Small tests/cryptorchidism

Micropenis

And, of course:

Family History of Delayed Puberty—CDGP/SLDP

Family History of IHH or infertility—IHH/CHH

And one other:

Timing of adrenarche—Often delayed in CDGP/SLDP; "on time" with IHH/CHH

Histories pointing to syndromic CHH can also be useful

Howard S and Dunkel L 2019 Oct; 40(5): 1285–1317

Physical exams complement histories

Arch Dis Child, Abitbol L, Zborovski S, Palmert MR; 2016

Differentiating CDGP/SLDP from IHH/CHH: History

Human Reproduction, Vol.32, No.1 pp. 147-153, 2017

Advanced Access publication on December 6, 2016 doi:10.1093/humrep/dew294

human reproduction

ORIGINAL ARTICLE Puberty, ageing and HRT

Congenital hypogonadotropic hypogonadism, functional hypogonadotropism or constitutional delay of growth and puberty? An analysis of a large patient series from a single tertiary center

Tero Varimo¹, Päivi J. Miettinen^{1,2}, Johanna Känsäkoski³, Taneli Raivio^{1,3,*}, and Matti Hero¹

Findings:

No feature of history among girls identified IHH/CHH

Among boys, cryptorchidism was associated with IHH/CHH (odds ratio of 17.2 (95% CI 3.4-85.4)

Testicular volume of \leq 1 ml had sensitivity of 100% and specificity of 91% for IHH/CHH

Clinical and biochemical criteria met by 174 boys and 70 girls

Objectives

- 1. Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap. Both disorders have strong genetic basis but causative genes are largely distinct
- 2. Recognize clinical features that may allow for discrimination of one condition from the other. History and physical exam can be informative, and some features are discriminatory
- 3. Discuss utility of diagnostic laboratory tests

Objectives

- 1. Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap. Both disorders have strong genetic basis but causative genes are largely distinct
- 2. Recognize clinical features that may allow for discrimination of one condition from the other. History and physical exam can be informative, and some features are discriminatory
- 3. Discuss utility of diagnostic laboratory tests.

JCEM, Harrington J and Palmert MR ; 2012

Specific clinical features may help prioritize genetic screening

European Consensus: Nat Rev Endocrinology, 2015

But routine testing to distinguish CDGP/SLDP from IHH/CHH—no recommendation made

Utility and use will likely increase as panels become more available, costs decrease and % of unknown causes decreases.

JCEM, Harrington J and Palmert MR ; 2012

Primary gonadal failure

Arch Dis Child, Abitbol L, Zborovski S, Palmert MR; 2016

JCEM, Harrington J and Palmert MR ; 2012

JCEM, Harrington J and Palmert MR ; 2012

Rationale for Inhibin B as distinguishing test

Paediatric and adult-onset male hypogonadism

Andrea Salonia^{1,2}*, Giulia Rastrelli³, Geoffrey Hackett⁴, Stephanie B. Seminara⁵, Ilpo T. Huhtaniemi^{6,7}, Rodolfo A. Rey⁸, Wayne J. G. Hellstrom⁹, Mark R. Palmert^{10,11}, Giovanni Corona^{5,12}, Gert R. Dohle¹³, Mohit Khera¹⁴, Yee-Ming Chan^{15,16} and Mario Maggi^{3,17}

Rationale for Inhibin B as distinguishing test

First report, Coutant R et al (JCEM 2010) reported value of < 35 pg/ml to be discriminatory—CHH

A subsequent report, Binder et al Clin Endo 2015, was also promising but reported a different cut off

While inhibin B concentrations are lower in IHH, there is some overlap with boys with CDGP/SLDP

Rationale for Inhibin B as distinguishing test

First report, Coutant R et al (JCEM 2010) reported value of < 35 pg/ml to be discriminatory—CHH

A subsequent report, Binder et al Clin Endo 2015, was also promising but reported a different cut off

- While inhibin B concentrations are lower in IHH/CHH, there is some overlap with boys with CDGP/SLDP
- Combination of basal inhibin B (< 111pg/ml) and basal LH (<0.3IU/L) has been demonstrated to have 100% sensitivity and a 98% specificity to differentiate IHH from CDGP/SLDP

Differentiating CDGP/SLDP from IHH/CHH: Some Numbers

Human Reproduction, Vol.32, No.1 pp. 147-153, 2017

Advanced Access publication on December 6, 2016 doi:10.1093/humrep/dew294

human reproduction

ORIGINAL ARTICLE Puberty, ageing and HRT

Congenital hypogonadotropic hypogonadism, functional hypogonadotropism or constitutional delay of growth and puberty? An analysis of a large patient series from a single tertiary center

Tero Varimo¹, Päivi J. Miettinen^{1,2}, Johanna Känsäkoski³, Taneli Raivio^{1,3,*}, and Matti Hero¹

Clinical and biochemical data met by 174 boys and 70 girls

Findings:

No feature of history among girls identified CHH

Among boys, cryptorchidism was associated with CHH (odds ratio of 17.2 (95% CI 3.4-85.4)

Testicular volume of \leq 1 ml had sensitivity of 100% and specificity of 91% for CHH

What about tests? Not great.....

Inhibin B cut-off of 61 ng/L had 83% specificity

JCEM, Harrington J and Palmert MR ; 2012

Newest Test on the Block

CLINICAL MEDICINE

JCI insight

2018

Divergent responses to kisspeptin in children with delayed puberty

Yee-Ming Chan,^{1,2} Margaret F. Lippincott,¹ Temitope O. Kusa,¹ and Stephanie B. Seminara¹

HPG Axis.....Just a reminder.....

Paediatric and adult-onset male hypogonadism

Andrea Salonia^{1,2}*, Giulia Rastrelli³, Geoffrey Hackett⁴, Stephanie B. Seminara⁵, Ilpo T. Huhtaniemi^{6,7}, Rodolfo A. Rey⁸, Wayne J. G. Hellstrom⁹, Mark R. Palmert^{10,11}, Giovanni Corona^{5,12}, Gert R. Dohle¹³, Mohit Khera¹⁴, Yee-Ming Chan^{15,16} and Mario Maggi^{5,17}

Newest Test on the Block

CLINICAL MEDICINE

JCI INSIGHT

Divergent responses to kisspeptin in children with delayed puberty

Yee-Ming Chan,^{1,2} Margaret F. Lippincott,¹ Temitope O. Kusa,¹ and Stephanie B. Seminara¹

Rationale/Design:

-Hypothesis: kisspeptin would elicit LH response in youth with intact/emerging reproductive endocrine function

--Verify intact axis by measurement of overnight pulses

-Compare kisspeptin response to GnRH response

In their study:

First morning LH First morning FSH Response to exogenous GnRH

All overlapped—CDGP/SLDP and IHH/CHH, at least partially

However,

Overnight LH pulses Response to kisspeptin

CDGP/SLDP differed from IHH/CHH

Will this really work? Who knows? This study included only 15 subjects (4 girls and 11 boys)

Help guide our efforts to modernize ClinicalTrials.gov. Send us your comments by March 14, 2020.	
NIH) U.S. National Library of Medicine ClinicalTrials.gov	d Studies ▼ About Studies ▼ Submit Studies ▼ Resources ▼ About Site ▼
Home > Search Results > Study Record Detail	Save this study
Trial record 6 of 23 for: kisspeptin	
Previous Study	Return to List Next Study *
Kisspeptin in the Evaluation of Delayed Puberty	
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.	ClinicalTrials.gov Identifier: NCT01438034 Recruitment Status ①: Recruiting First Posted ①: September 21, 2011 Last Update Posted ①: December 19, 2019 See Contacts and Locations
Sponsor: Massachusetts General Hospital Information provided by (Responsible Party): Stephanie B. Seminara, MD, Massachusetts General Hospital Study Details Tabular View No Results Posted Disclaimer Image: How to Read a Study Record	
Study Description	Go to 💌

Brief Summary:

Some children with delayed puberty will eventually enter puberty on their own. However, some children with delayed puberty have a permanent condition and require medical treatment to undergo puberty. Right now, there is no reliable diagnostic tool to tell whether a child's delayed puberty will be self-resolving or permanent. The hormone kisspeptin has the potential to prospectively diagnose adolescents with self-resolving or permanent delayed puberty.

Objectives

- Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap. Both disorders have strong genetic basis but causative genes are largely distinct
- 2. Recognize clinical features that may allow for discrimination of one condition from the other. History and physical exam can be informative, and some features are discriminatory
- 3. Discuss utility of diagnostic laboratory tests There is an increasing role for genetic testing, though not yet routine; other tests are being evaluated, including (??) inhibin B measurements and dynamic testing with Kisspeptin.

Objectives

- Discuss the pathophysiology of Constitutional Delay of Growth and Puberty (CDGP/SLDP) and Isolated Hypogonadotropic Hypogonadism (IHH/CHH), with focus on areas of overlap. Both disorders have strong genetic basis but causative genes are largely distinct
- 2. Recognize clinical features that may allow for discrimination of one condition from the other. History and physical exam can be informative, and some features are discriminatory
- 3. Discuss utility of diagnostic laboratory tests There is an increasing role for genetic testing, though not yet routine; other tests are being evaluated, including (??) inhibin B measurements and dynamic testing with Kisspeptin. MRI to be considered to rule out CNS abnormality if endogenous puberty has not started by age 15 in boys and 14 in girls. (Sometimes provides clue to IHH/CHH, e.g. absent olfactory bulbs.)

Let's discuss a couple cases

A 14 yr old young man with history of delayed puberty.....

Can we separate CDGP/SLDP from IHH/CHH?

Let's discuss a couple cases

A 14 yr old young man with history of delayed puberty and....

--bilateral cryptorchidism and micropenis at birth

--absent sense of smell

--development of pubic hair at age 11.5 yrs

And family history of father who started puberty late, experienced stalled development, and required treatment for masculinization and to induce fertility

And physical exam that reveals 1 cc testes

Which does he have: CDGP/SLDP or IHH/CHH?

Let's discuss a couple cases

A 14 yr old young man with history of delayed puberty and.....

--no previous medical problems

--intact sense of small

--development of pubic hair at age 13 yrs

And family history of mom with menarche at age 15 yrs and father who grew in height after high school

And physical exam that reveals testes that are 3 cc in volume

Which does he have: CDGP/SLDP or IHH/CHH?

Summary

- 1. Genetically CDGP/SLDP and IHH/CHH represent two sides of the same (similar) coin
- 2. In some ways we can even differentiate heads from tails. But not always...
- 3. In unclear cases, time and evidence of spontaneous, endogenous puberty may be our best discriminatory "tests."